skip to main content


Search for: All records

Creators/Authors contains: "Allen, Caitilyn"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Plant disease limits crop production, and host genetic resistance is a major means of control. Plant pathogenicRalstoniacauses bacterial wilt disease and is best controlled with resistant varieties. Tomato wilt resistance is multigenic, yet the mechanisms of resistance remain largely unknown. We combined metaRNAseq analysis and functional experiments to identify coreRalstonia‐responsive genes and the corresponding biological mechanisms in wilt‐resistant and wilt‐susceptible tomatoes. While trade‐offs between growth and defence are common in plants, wilt‐resistant plants activated both defence responses and growth processes. Measurements of innate immunity and growth, including reactive oxygen species production and root system growth, respectively, validated that resistant plants executed defence‐related processes at the same time they increased root growth. In contrast, in wilt‐susceptible plants roots senesced and root surface area declined followingRalstoniainoculation. Wilt‐resistant plants repressed genes predicted to negatively regulate water stress tolerance, while susceptible plants repressed genes predicted to promote water stress tolerance. Our results suggest that wilt‐resistant plants can simultaneously promote growth and defence by investing in resources that act in both processes. Infected susceptible plants activate defences, but fail to grow and so succumb toRalstonia, likely because they cannot tolerate the water stress induced by vascular wilt.

     
    more » « less
  2. null (Ed.)
    Vascular plant pathogens travel long distances through host veins, leading to life-threatening, systemic infections. In contrast, nonvascular pathogens remain restricted to infection sites, triggering localized symptom development. The contrasting features of vascular and nonvascular diseases suggest distinct etiologies, but the basis for each remains unclear. Here, we show that the hydrolase CbsA acts as a phenotypic switch between vascular and nonvascular plant pathogenesis. cbsA was enriched in genomes of vascular phytopathogenic bacteria in the family Xanthomonadaceae and absent in most nonvascular species. CbsA expression allowed nonvascular Xanthomonas to cause vascular blight, while cbsA mutagenesis resulted in reduction of vascular or enhanced nonvascular symptom development. Phylogenetic hypothesis testing further revealed that cbsA was lost in multiple nonvascular lineages and more recently gained by some vascular subgroups, suggesting that vascular pathogenesis is ancestral. Our results overall demonstrate how the gain and loss of single loci can facilitate the evolution of complex ecological traits. 
    more » « less